Web-Materials

 
List of Problems
+
1.1 Virial theorem 102
1.2 Atomic mass and molar fractions 103
1.3 The covalent bond 103
1.4 Ionic bonding and CsCl 104
1.5 Madleung constant 104
1.6 Bonding and bulk modulus 104
1.7 Van der Waals bonding 105
1.8 Kinetic molecular theory 105
1.9 Kinetic molecular theory 105
1.10 Kinetic molecular theory and Ar-ion laser 105
1.11 Vacuum deposition 106
1.12 Heat capacity 107
1.13 Dulong-petit atomic heat capacity 107
1.14 Dulong-petit specific heat capacity of alloys and compounds 107
1.15 Thermal expansion 108
1.16 Thermal expansion of Si 108
1.17 Thermal expansion of GaP and GaAs 108
1.18 Electrical noise 108
1.19 Thermal activation 109
1.20 Diffusion in Si 109
1.21 Diffusion in SiO2 109
1.22 BCC and FCC crystals 109
1.23 BCC and FCC crystals 109
1.24 Planar and surface concentrations 109
1.25 Diamond and zinc blende 109
1.26 Zinc blende, NaCl, and CsCl 109
1.27 Crystallographic directions and planes 110
1.28 Si and SiO2 110
1.29 Vacancies in metals 110
1.30 Vacancies in silicon 111
1.31 Pb-Sn solder 111
1.32 Pb-Sn solder 111
 
 
2.1 Electrical conduction 180
2.2 Electrical conduction 180
2.3 Conduction in gold 181
2.4 Effective number of conduction electrons per atom 181
2.5 TCR and Matthiessen's rule 181
2.6 TCR of isomorphous alloys 182
2.7 Resistivity of isomorphous alloys and nordheim's rule 182
2.8 Nordheim's rule and brass 182
2.9 Resistvity of solid solution metal allys: testing nordheim's rule 182
2.10 TCR and alloy resistivity 183
2.11 Electrical and thermal conductivity of In 183
2.12 Electrical and thermal conductivity of Ag 183
2.13 Mixture rules 184
2.14 Mixture rules 184
2.15 Ag-Ni alloys (contact materials) and the mixture rules 184
2.16 Ag-W alloys (contact materials) and the mixture rule 184
2.17 Thermal conduction 185
2.18 Thermal resistance 185
2.19 Thermal resistance 185
2.20 The Hall effect 185
2.21 The strain gauge 186
2.22 Thermal coefficients of expansion and resistivity 187
2.23 Temperature of a light bulb filament 187
2.24 Einstein relation and ionic conductivity 188
2.25 Skin effect 188
2.26 Thin films 188
2.27 Interconnects 188
2.28 Thin 50 nm interconnects 188
2.29 TCR of thin films 189
2.30 Electromigration 189
 
 
3.1 Photons and photon flux 272
3.2 Yellow, cyan, magenta, and white 272
3.3 Brightness of laser pointers 273
3.4 Human eye 273
3.5 X-ray photons 275
3.6 X-rays, exposure, and roentgens 275
3.7 Photoelectric effect 276
3.8 Photoelectric effect and quantum efficiency 276
3.9 Photoelectric effect 276
3.10 Planck's law and photon energy distribution of radiation 277
3.11 Wien's law 277
3.12 Diffraction by X-rays and an electron beam 277
3.13 Heisenberg's uncertainity principle 277
3.14 Heisenberg's uncertainity principle 277
3.15 Tunneling 278
3.16 Electron impact excitation 278
3.17 Line spectra of hydrogenic atoms 278
3.18 Inozation energy and effective Z 278
3.19 Atomic and ionic radii 278
3.20 X-rays and the Moseley relation 279
3.21 The He atom 280
3.22 Excitation energy of He 280
3.23 Electron affinity 280
3.24 Electron spin resonance (ESR) 280
3.25 Spin-orbit coupling 280
3.26 Hund's rule 281
3.27 Hund's rule 281
3.28 The HeNe laser 281
3.29 Er3+-doped fiber amplifier 282
 
 
4.1 Phase of an atomic orbital 365
4.2 Molecular orbitals and atomic orbitals 365
4.3 Diamond and tin 365
4.4 Compound III-V Semiconductors 366
4.5 Compound II-V Semiconductors 366
4.6 Density of states for a two-dimensional electron gas 366
4.7 Fermi energy of Cu 366
4.8 Free electron model, Fermi energy, and density of states 366
4.9 Fermi energy and electron concentration 366
4.10 Temperature dependence of the Fermi level 367
4.11 X-ray emission spectrum from sodium 367
4.12 Conductivity of metals in the free electron model 367
4.13 Mean free path of conduction electrons in a metal 367
4.14 Low-temperature heat capacity of metals 368
4.15 Secondary emission and photomultiplier tubes 368
4.16 Thermoelectric effect and E F 369
4.17 The thermocouple equation 369
4.18 Thermionic emission 369
4.19 Field-assisted emission in MOS devices 369
4.20 CNTs and field emission 370
4.21 Nordheim-Fowler field emission in an FED 370
4.22 Lattice waves and heat capacity 370
4.23 Specific heat capacity of GaAs and InSb 370
4.24 Thermal conductivity 370
4.25 Overlapping bonds 371
4.26 Overlapping bonds at E F and higher resistivity 371
4.27 Gruneisen's law 371
 
 
5.1 Bandgap and photodetection 464
5.2 Intrinsic Ge 464
5.3 Fermi level in intrinsic semiconductors 464
5.4 Extrinisic Si 464
5.5 Extrinisic Si 464
5.6 Minimum conductivity 464
5.7 Extrinisic p-Si 465
5.8 Thermal velocity and mean free path in GaAs 465
5.9 Compensation doping in Si 465
5.10 Temperature dependence of conductivity 465
5.11 Ionization at low temperatures in doped semiconductors 465
5.12 Compensation doping in n-type Si 466
5.13 GaAs 466
5.14 Doped GaAs 467
5.15 Varshni equation and the change in the bandgap with temperature 467
5.16 Degenerate semiconductor 467
5.17 Photoconductivity and speed 467
5.18 Hall effect in semiconductors 467
5.19 Hall effect in semiconductors 468
5.20 Compound semiconductor devices 468
5.21 Excess minority carrier concentration 468
5.22 Direct recombination and GaAs 469
5.23 Piezoresistivity application to deflection and force measurement 470
5.24 Schottky junction 470
5.25 Schottky junction 470
5.26 Schottky and ohmic contacts 470
5.27 Peltier effect and electrical contacts 471
5.28 Peltier coolers and figure of merit (FOM) 471
5.29 Seebeck coefficient of semiconductors and thermal drift in semiconductor devices 472
5.30 Photogeneration and carrier kinetic energies 473
 
 
6.1 The pn junction 573
6.2 The Si pn junction 573
6.3 Junction capacitance of a pn junction 573
6.4 Temperature dependence of diode properties 574
6.5 Avalanche breakdown 574
6.6 Design of a pn junction diode 574
6.7 Minority carrier profiles (the hyperbolic functions) 574
6.8 The pnp bipolar transistor 574
6.9 Characteristics of an npn Si BJT 575
6.10 Bandgap narrowing and emitter injection efficiency 576
6.11 The JFET pinch-off voltage 576
6.12 The JFET 577
6.13 The JFET amplifier 577
6.14 The enhancement NMOSFET amplifier 577
6.15 Ultimate limits to device performance 578
6.16 Energy distribution of elecrons in the conduction band of a semiconductor and LED emission spectrum 578
6.17 LED output spectrum 579
6.18 LED output wavelength variations 579
6.19 Linewidth of direct recombination LEDs 579
6.20 AlGaAs LED emitter 579
6.21 Solar cell driving a load 580
6.22 Open circuit voltage 580
6.23 Maximum power from a solar cell 580
6.24 Series resistance 581
6.25 Shunt resistance 581
6.26 Series connected solar cells 581
6.27 A solar cell used in eskimo point 581
 
 
7.1 Relative permittivity and polarizability 673
7.2 Electronic polarization and SF6 673
7.3 Electronic polarization in liquid xenon 673
7.4 Relative permittivity, bond strength, bandgap and refractive index 673
7.5 Dipolar liquids 674
7.6 Dielectric constant of water vapor or steam 674
7.7 Dipole moment in a nonuniform electric field 674
7.8 Ionic and electronic polarization 675
7.9 Electronic and inoic polarization in KCl 675
7.10 Debye relaxation 675
7.11 Debye and non-Debye relaxation and cole-cole plots 675
7.12 Equivalent circuit of a polyester capacitor 675
7.13 Student microwaves mashed potatoes 676
7.14 Dielectric loss per unit capacitance 676
7.15 Paralled and series equivalent circuits 676
7.16 Tantalum capacitors 676
7.17 Tantalum versus niobium oxide capacitors 677
7.18 TCC of a polyester capacitor 677
7.19 Dielectric breakdown of gases and Pashen curves 677
7.20 Capacitor design 678
7.21 Dielectric breakdown in a coaxial cable 678
7.22 Piezoelectricity 679
7.23 Piezoelectric voltage coefficient 680
7.24 Piezoelectricity and the piezoelectric bender 680
7.25 Piezoelectricity 681
7.26 Pyroelectric detectors 681
7.27 LiTaO3 pyroelectric detector 681
7.28 Pyroelectric detectors 681
7.29 Spark generator design 683
7.30 Ionic polarization resonance in CsCl 683
7.31 Low-k porous dielectrics for microelectronics 683
 
 
8.1 Inductance of a long solenoid 763
8.2 Magnetization 764
8.3 Paramagnetic and diamagnetic materials 764
8.4 Mass and molar susceptibilities 764
8.5 Pauli spin paramagnetism 764
8.6 Ferromagmetism and the exchange interaction 764
8.7 Magnetic domain wall energy and thickness 764
8.8 Toroidal inductor and radio engineers toroidal inductance equation 765
8.9 A toroidal inductor 765
8.10 The transformer 766
8.11 Losses in a magnetic recording head 767
8.12 Design of a ferrite antena for an AM receiver 767
8.13 A permanent magnet with an air gap 767
8.14 A permanent magnet with an air gap 768
8.15 Weight, cost, and energy of a permanent magnet with an air gap 768
8.16 Permanent magnet with yoke and air gap 768
8.17 Superconductivity and the critical current density 769
8.18 Magnetic pressure in a solenoid 769
8.19 Enterprising engineers in the high arctic building a superconducting inductor 770
8.20 Magnetic storage media 770
8.21 Magnetic recording principles 770
 
 
9.1 Refractive index and relative permittivity 844
9.2 Refractive index and bandgap 845
9.3 Temperature coefficient of refractive index 845
9.4 Sellmeier dispersion equation 845
9.5 Dispersion (n versus l) in GaAs 845
9.6 Cauchy dispersion equation 845
9.7 Cauchy dispersion relation for zinc selenide 845
9.8 Dispersion (n versus l) 845
9.9 Dispersion and diamond 846
9.10 Electric and magnetic fields in light 846
9.11 Reflection of light from a less dense medium (internal reflection) 846
9.12 Internal and external reflection at normal incidence 846
9.13 Antireflection coating 846
9.14 Optical fibers in communications 847
9.15 Optical fibers in communications 847
9.16 Complex refractive index 847
9.17 Complex refractive index 847
9.18 Free Carrier absorption in n -type Ge 847
9.19 Reststrahlen absorption in CdTe 847
9.20 Reststrahlen absorption in GaAs 847
9.21 Fundamental absorption 847
9.22 Quartz half-wave plate 847
9.23 Pockels cell modulator 847
A McGraw-Hill Book with Web Resources
Web-Materials, Third Edition Website




Web-Materials
Materials and Devices Website for Scientists and Engineers

Serving scientists and engineers since 1996. Dedicated to continuing education.
Principles of Electronic Materials and Devices, Third Edition - S. O. Kasap