Web-Materials

 

PRINCIPLES OF ELECTRONIC
MATERIALS AND DEVICES


Third Edition

S.O. Kasap
Professor of Electrical Engineering
University of Saskatchewan
Canada


ę McGraw-Hill (1997, 2000, 2002, 2005)
ISBN: 0-07-310464-7

"Concepts form the basis for any science. These are ideas, usually somewhat vague (especially when first encountered), which often defy really adequate definition. The meaning of a new concept can seldom be grasped from reading a one-paragraph discussion. There must be time to become accustomed to the concept, to investigate it with prior knowledge, and to associate it with personal experience. Inability to work with details of a new subject can often be traced to inadequate understanding of its basic concepts"

William C. Reynolds,
Thermodynamics (McGraw-Hill, 1968: Now out of print)

Table of Contents
Chapter 1
 Elementary Materials Science Concepts3
1.1Atomic Structure and Atomic Number3
1.2Atomic Mass and Mole8
1.3Bonding and Types of Solids9
1.3.1Molecules and General Bonding Principles9
1.3.2Covalently Bonded Solids: Diamond11
1.3.3Metallic Bonding: Copper13
1.3.4Ionically Bonded Solids: Salt14
1.3.5Secondary Bonding18
1.3.6Mixed Bonding22
1.4Kinetic Molecular Theory25
1.4.1Mean Kinetic Energy and Temperature25
1.4.2Thermal Expansion31
1.5Molecular Velocity and Energy Distribution36
1.6Heat, Thermal Fluctuations, and Noise40
1.7Thermally Activated Processes45
1.7.1Arrhenius Rate Equation45
1.7.2Atomic Diffusion and the Diffusion Coefficient47
1.8The Crystalline State49
1.8.1Types of Crystals49
1.8.2Crystal Directions and Planes56
1.8.3Allotropy and Carbon61
1.9Crystalline Defects and Their Significance64
1.9.1Point Defects: Vacancies and Impurities64
1.9.2Line Defects: Edge and Screw Dislocations68
1.9.3Planar Defects: Grain Boundaries70
1.9.4Crystal Surfaces and Surface Properties73
1.9.5Stoichiometry, Nonstoichiometry, and Defect Structures75
1.10Single-Crystal Czochralski Growth76
1.11Glasses and Amorphous Semiconductors78
1.11.1Glasses and Amorphous Solids78
1.11.2Crystalline and Amorphous Silicon80
1.12Solid Solutions and Two-Phase Solids83
1.12.1Isomorphous Solid Solutions: Isomorphous Alloys83
1.12.2Phase Diagrams: Cu-Ni and Other Isomorphous Alloys84
1.12.3Zone Refining and Pure Silicon Crystals88
1.12.4Binary Eutectic Phase Diagrams and Pb-Sn Solders90
 Additional Topics95
1.13Bravais Lattices95
 CD Selected Topics and Solved Problems98
 Defining Terms98
 Questions and Problems102
Chapter 2
 Electrical and Thermal Conduction in Solids113
2.1Classical Theory: The Drude Model114
2.1.1Metals and Conduction by Electrons114
2.2Temperature Dependence of Resistivity: Ideal Pure Metals122
2.3Matthiessen's and Nordheim's Rules125
2.3.1Matthiessen's Rule and the Temperature Coefficient of Resistivity (α)125
2.3.2Solid Solutions and Nordheim's Rule134
2.4Resistivity of Mixtures and Porous Materials139
2.4.1Heterogeneous Mixtures139
2.4.2Two-Phase Alloy (Ag-Ni) Resistivity and Electrical Contacts143
2.5The Hall Effect and Hall Devices145
2.6Thermal Conduction149
2.6.1Thermal Conductivity149
2.6.2Thermal Resistance153
2.7Electrical Conductivity of Nonmetals154
2.7.1Semiconductors155
2.7.2Ionic Crystals and Glasses159
 Additional Topics163
2.8Skin Effect: HF Resistance of a Conductor163
2.9Thin Metal Films166
2.9.1Conduction in Thin Metal Films166
2.9.2Resistivity of Thin Films167
2.10Interconnects in Microelectronics172
2.11Electromigration and Black's Equation176
 CD Selected Topics and Solved Problems178
 Defining Terms178
 Questions and Problems180
Chapter 3
 Elementary Quantum Physics191
3.1Photons191
3.1.1Light as a Wave191
3.1.2The Photoelectric Effect194
3.1.3Compton Scattering199
3.1.4Black Body Radiation202
3.2The Electron as a Wave205
3.2.1De Broglie Relationship205
3.2.2Time-Independent SchrÜdinger Equation208
3.3Infinite Potential Well: A Confined Electron212
3.4Heisenberg's Uncertainty Principle217
3.5Tunneling Phenomenon: Quantum Leak221
3.6Potential Box: Three Quantum Numbers228
3.7Hydrogenic Atom231
3.7.1Electron Wavefunctions231
3.7.2Quantized Electron Energy236
3.7.3Orbital Angular Momentum and Space Quantization241
3.7.4Electron Spin and Intrinsic Angular Momentum S245
3.7.5Magnetic Dipole Moment of the Electron248
3.7.6Total Angular Momentum J252
3.8The Helium Atom and the Periodic Table254
3.8.1He Atom and Pauli Exclusion Principle254
3.8.2Hund's Rule256
3.9Stimulated Emission and Lasers258
3.9.1Stimulated Emission and Photon Amplification258
3.9.2Helium-Neon Laser261
3.9.3Laser Output Spectrum265
 Additional Topics267
3.10Optical Fiber Amplifiers267
 CD Selected Topics and Solved Problems268
 Defining Terms269
 Questions and Problems272
Chapter 4
 Modern Theory of Solids285
4.1Hydrogen Molecule: Molecular Orbital Theory of Bonding285
4.2Band Theory of Solids291
4.2.1Energy Band Formation291
4.2.2Properties of Electrons in a Band296
4.3Semiconductors299
4.4Electron Effective Mass303
4.5Density of States in an Energy Band305
4.6Statistics: Collections of Particles312
4.6.1Boltzmann Classical Statistics312
4.6.2Fermi-Dirac Statistics313
4.7Quantum Theory of Metals315
4.7.1Free Electron Model315
4.7.2Conduction in Metals318
4.8Fermi Energy Significance320
4.8.1Metal-Metal Contacts: Contact Potential320
4.8.2The Seebeck Effect and the Thermocouple322
4.9Thermionic Emission and Vacuum Tube Devices328
4.9.1Thermionic Emission: Richardson-Dushman Equation328
4.9.2Schottky Effect and Field Emission332
4.10Phonons337
4.10.1Harmonic Oscillator and Lattice Waves337
4.10.2Debye Heat Capacity342
4.10.3Thermal Conductivity of Nonmetals348
4.10.4Electrical Conductivity350
 Additional Topics352
4.11Band Theory of Metals: Electron Diffraction in Crystals352
4.12Grčneisen's Model of Thermal Expansion361
 CD Selected Topics and Solved Problems363
 Defining Terms363
 Questions and Problems365
Chapter 5
 Semiconductors373
5.1Intrinsic Semiconductors374
5.1.1Silicon Crystal and Energy Band Diagram374
5.1.2Electrons and Holes376
5.1.3Conduction in Semiconductors378
5.1.4Electron and Hole Concentrations380
5.2Extrinsic Semiconductors388
5.2.1n-Type Doping388
5.2.2p-Type Doping390
5.2.3Compensation Doping392
5.3Temperature Dependence of Conductivity396
5.3.1Carrier Concentration Temperature Dependence396
5.3.2Drift Mobility: Temperature and Impurity Dependence401
5.3.3Conductivity Temperature Dependence404
5.3.4Degenerate and Nondegenerate Semiconductors406
5.4Recombination and Minority Carrier Injection407
5.4.1Direct and Indirect Recombination407
5.4.2Minority Carrier Lifetime410
5.5Diffusion and Conduction Equations, and Random Motion416
5.6Continuity Equation422
5.6.1Time-Dependent Continuity Equation422
5.6.2Steady-State Continuity Equation424
5.7Optical Absorption427
5.8Piezoresistivity431
5.9Schottky Junction435
5.9.1Schottky Diode435
5.9.2Schottky Junction Solar Cell440
5.10Ohmic Contacts and Thermoelectric Coolers443
 Additional Topics448
5.11Direct and Indirect Bandgap Semiconductors448
5.12Indirect Recombination457
5.13Amorphous Semiconductors458
 CD Selected Topics and Solved Problems461
 Defining Terms461
 Questions and Problems464
Chapter 6
 Semiconductor Devices475
6.1Ideal pn Junction476
6.1.1No Applied Bias: Open Circuit476
6.1.2Forward Bias: Diffusion Current481
6.1.3Forward Bias: Recombination and Total Current487
6.1.4Reverse Bias489
6.2pn Junction Band Diagram494
6.2.1Open Circuit494
6.2.2Forward and Reverse Bias495
6.3Depletion Layer Capacitance of the pn Junction498
6.4Diffusion (Storage) Capacitance and Dynamic Resistance500
6.5Reverse Breakdown: Avalanche and Zener Breakdown502
6.5.1Avalanche Breakdown503
6.5.2Zener Breakdown504
6.6Bipolar Transistor (BJT)506
6.6.1Common Base (CB) dc Characteristics506
6.6.2Common Base Amplifier515
6.6.3Common Emitter (CE) dc Characteristics517
6.6.4Low-Frequency Small-Signal Model518
6.7Junction Field Effect Transistor (JFET)522
6.7.1General Principles522
6.7.2JFET Amplifier528
6.8Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)532
6.8.1Field Effect and Inversion532
6.8.2Enhancement MOSFET535
6.8.3Threshold Voltage539
6.8.4Ion Implanted MOS Transistors and Poly-Si Gates541
6.9Light Emitting Diodes (LED)543
6.9.1LED Principles543
6.9.2Heterojunction High-Intensity LEDs547
6.9.3LED Characteristics548
6.10Solar Cells551
6.10.1Photovoltaic Device Principles551
6.10.2Series and Shunt Resistance559
6.10.3Solar Cell Materials, Devices, and Efficiencies561
 Additional Topics564
6.11pin Diodes, Photodiodes, and Solar Cells564
6.12Semiconductor Optical Amplifiers and Lasers566
 CD Selected Topics and Solved Problems570
 Defining Terms570
 Questions and Problems573
Chapter 7
 Dielectric Materials and Insulation583
7.1Matter Polarization and Relative Permittivity584
7.1.1Relative Permittivity: Definition584
7.1.2Dipole Moment and Electronic Polarization585
7.1.3Polarization Vector P589
7.1.4Local Field Eloc and Clausius-Mossotti Equation593
7.2Electronic Polarization: Covalent Solids595
7.3Polarization Mechanisms597
7.3.1Ionic Polarization597
7.3.2Orientational (Dipolar) Polarization598
7.3.3Interfacial Polarization600
7.3.4Total Polarization601
7.4Frequency Dependence: Dielectric Constant and Dielectric Loss603
7.4.1Dielectric Loss603
7.4.2Debye Equations, Cole-Cole Plots, and Equivalent Series Circuit611
7.5Gauss's Law and Boundary Conditions614
7.6Dielectric Strength and Insulation Breakdown620
7.6.1Dielectric Strength: Definition620
7.6.2Dielectric Breakdown and Partial Discharges: Gases621
7.6.3Dielectric Breakdown: Liquids622
7.6.4Dielectric Breakdown: Solids623
7.7Capacitor Dielectric Materials631
7.7.1Typical Capacitor Constructions631
7.7.2Dielectrics: Comparison634
7.8Piezoelectricity, Ferroelectricity, and Pyroelectricity638
7.8.1Piezoelectricity638
7.8.2Piezoelectricity: Quartz Oscillators and Filters644
7.8.3Ferroelectric and Pyroelectric Crystals647
 Additional Topics654
7.9Electric Displacement and Depolarization Field654
7.10Local Field and the Lorentz Equation658
7.11Dipolar Polarization660
7.12Ionic Polarization and Dielectric Resonance662
7.13Dielectric Mixtures and Heterogeneous Media667
 CD Selected Topics and Solved Problems669
 Defining Terms670
 Questions and Problems673
Chapter 8
 Magnetic Properties and Superconductivity685
8.1Magnetization of Matter685
8.1.1Magnetic Dipole Moment685
8.1.2Atomic Magnetic Moments687
8.1.3Magnetization Vector M688
8.1.4Magnetizing Field or Magnetic Field Intensity H691
8.1.5Magnetic Permeability and Magnetic Susceptibility692
8.2Magnetic Material Classifications696
8.2.1Diamagnetism696
8.2.2Paramagnetism698
8.2.3Ferromagnetism699
8.2.4Antiferromagnetism699
8.2.5Ferrimagnetism700
8.3Ferromagnetism Origin and the Exchange Interaction700
8.4Saturation Magnetization and Curie Temperature703
8.5Magnetic Domains: Ferromagnetic Materials705
8.5.1Magnetic Domains705
8.5.2Magnetocrystalline Anisotropy706
8.5.3Domain Walls708
8.5.4Magnetostriction711
8.5.5Domain Wall Motion712
8.5.6Polycrystalline Materials and the M versus H Behavior713
8.5.7Demagnetization717
8.6Soft and Hard Magnetic Materials719
8.6.1Definitions719
8.6.2Initial and Maximum Permeability720
8.7Soft Magnetic Materials: Examples and Uses721
8.8Hard Magnetic Materials: Examples and Uses724
8.9Superconductivity729
8.9.1Zero Resistance and the Meissner Effect729
8.9.2Type I and Type II Superconductors733
8.9.3Critical Current Density736
8.10Superconductivity Origin739
 Additional Topics740
8.11Energy Band Diagrams and Magnetism740
8.11.1Pauli Spin Paramagnetism740
8.11.2Energy Band Model of Ferromagnetism742
8.12Anisotropic and Giant Magnetoresistance744
8.13Magnetic Recording Materials749
8.14Josephson Effect756
8.15Flux Quantization758
 CD Selected Topics and Solved Problems759
 Defining Terms759
 Questions and Problems763
Chapter 9
 Optical Properties of Materials773
9.1Light Waves in a Homogeneous Medium774
9.2Refractive Index777
9.3Dispersion: Refractive Index-Wavelength Behavior779
9.4Group Velocity and Group Index784
9.5Magnetic Field: Irradiance and Poynting Vector787
9.6Snell's Law and Total Internal Reflection (TIR)789
9.7Fresnel's Equations793
9.7.1Amplitude Reflection and Transmission Coefficients793
9.7.2Intensity, Reflectance, and Transmittance799
9.8Complex Refractive Index and Light Absorption804
9.9Lattice Absorption811
9.10Band-to-Band Absorption813
9.11Light Scattering in Materials816
9.12Attenuation in Optical Fibers817
9.13Luminescence, Phosphors, and White LEDs820
9.14Polarization825
9.15Optical Anisotropy827
9.15.1Uniaxial Crystals and Fresnel's Optical Indicatrix829
9.15.2Birefringence of Calcite832
9.15.3Dichroism833
9.16Birefringent Retarding Plates833
9.17Optical Activity and Circular Birefringence835
 Additional Topics837
9.18Electro-optic Effects837
 CD Selected Topics and Solved Problems841
 Defining Terms841
 Questions and Problems844
Appendix
 Appendix A - Bragg's Diffraction Law and X-ray Diffraction848
 Appendix B - Flux, Luminous Flux, and the Brightness of Radiation853
 Appendix C - Major Symbols and Abbreviations855
 Appendix D - Elements to Uranium861
 Appendix E - Constants and Useful Information864
 Index866
A McGraw-Hill Book with Web Resources
Web-Materials, Third Edition Website




Web-Materials
Materials and Devices Website for Scientists and Engineers

Serving scientists and engineers since 1996. Dedicated to continuing education.
Principles of Electronic Materials and Devices, Third Edition - S. O. Kasap