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Only important scientific content related errors are listed.  

First printing (April 2017)  

Corrections to print version; the e-version is likely to be correct 

Page 143: Figure 2.8. The low temperature residual resistivity value shown is 7x10-5 nΩ m. This should 
be 4x10-4 nΩ m. The ρ vs T behavior curves at a higher ρR. 

Page 230: The wavelength 0.0367 nm in Fig. 3.14(b) and 0.0357 nm in the caption should be 0.0123 
nm.   

Page 245: Equation [3.37], delete the term "(2me/h2)" before "α"  

Page 252: Photo on bottom right corner of page, caption should read "An STM image of a silicon 
crystal surface".  

Page 514: Question 5.15, Figure 5.56."Ga should have 3 electrons and As should have 5 electrons". 
(This is correct in the 3rd Edition) 

Page 555: Last sentence. Vr
 should be Vr

  

Page 556: Equation 6.30, next equation and p557, the equation starting with “slope =”, should have Nd 
in the denominator. All calculations and conclusions are correct. (A typographic error only.) 

Page 816: "decreases" in line 3 below Fig. 8.46 should be "increases" and "increases" in the next line 
should be "decreases".  
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2 . 3  matthiESSEn’S and nordhEim’S rulES 143

Matthiessen’s rule, the resistivity becomes ρ = DT5 + ρR, where D is a constant. Since 
the slope of ρ versus T is dρ∕dT = 5DT 4, which tends to zero as T becomes small, 
we have ρ curving toward ρR as T decreases toward 0 K. This is borne out by 
experiments, as shown in Figure 2.8 for copper. Therefore, at the lowest temperatures 
of interest, the resistivity is limited by scattering from impurities and crystal defects.7

Figure 2.8 The resistivity of copper from lowest to highest temperatures (near 
melting temperature, 1358 K) on a log-log plot.

Above about 100 K, ρ ∝ T1.16 (approximately ρ ∝ T), whereas at low 
temperatures, ρ ∝ T5, and at the lowest temperatures ρ approaches the residual 
resistivity ρR. The inset shows the ρ versus T behavior below 100 K on a linear 
plot. (ρR is too small on this scale.)

7 At sufficiently low temperatures (typically, below 10–20 K for many metals and below ∼135 K for certain ceramics) 
certain materials exhibit superconductivity in which the resistivity vanishes (ρ = 0), even in the presence of 
impurities and crystal defects. Superconductivity and its quantum mechanical origin will be explained in Chapter 8.

MATTHIESSEN’S RULE Explain the typical resistivity versus temperature behavior of annealed 
and cold-worked (deformed) copper containing various amounts of Ni as shown in Figure 2.9.

SOLUTION

When small amounts of nickel are added to copper, the resistivity increases by virtue of 
Matthiessen’s rule, ρ = ρT + ρR + ρI, where ρT is the resistivity due to scattering from thermal 
vibrations; ρR is the residual resistivity of the copper crystal due to scattering from crystal 
defects, dislocations, trace impurities, etc.; and ρI is the resistivity arising from Ni addition 

 EXAMPLE 2.7
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230 C H A P T E R  3  ∙ ElEmEntary Quantum Physics

Table 3.1 Results from electron diffraction experiments on a polycrystalline Al sample

V (kV) 10 9 8 7 6 5
D1 (mm) 19.6 20.5 22.3 23.4 25.4 27.6
1∕V1∕2 (V−1∕2) 0.0100 0.0105 0.0112 0.0120 0.0129 0.0141
2θ1 = arctan(1

2D1∕R) 3.0654° 3.2058° 3.4867° 3.6582° 3.9699° 4.3125°
sin θ1 0.0267 0.0280 0.0304 0.0319 0.0346 0.0376

If de Broglie’s hypothesis is correct, then the electron’s wavelength λ is given by

 λ =
h

p
=

h

(2emeV)1∕2  [3.16]

When we adjust the anode voltage V, we are actually changing the de Broglie wavelength λ of 
the electrons in the experiment. We should be able to use the experimental data to show that this 
expression is indeed correct and find an experimental value for h from electron diffraction exper-
iments. The separation d between the (111) planes in the FCC crystal is6 d = a∕31∕2 where a is 
the unit cell lattice parameter, given as 0.4049 nm. The first diffraction ring satisfies the Bragg 
diffraction condition 2d sin θ1 = nλ in Equation 3.3, in which 2θ1 is the diffraction angle, and 
normally n = 1. Thus, using Equation 3.15 in the Bragg diffraction condition for the (111) planes

 sin θ1 =
31∕2λ

2a
= [

31∕2h

2a(2eme)1∕2]
1

V1∕2  [3.17]

 If we were to plot sin θ1 versus 1∕V1∕2, we should get a straight line through the origin 
whose slope would give us an experimental value for h. We can find sin θ1 as follows. We 

Electron 
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Bragg 
condition for 
the first 
diffraction 
ring

 6 It is not difficult to show that for all cubic crystals, the separation between (hkl) planes is given by  
d = a∕(h2 + k2 + l2)1∕2. See Appendix A and Chapter 1.
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Figure 3.14  Electron diffraction experiments. (a) A simplified view of an electron diffraction experiment. The voltage V on the 
anode accelerates the electrons, which pass the anode toward a fluorescent screen. When the beam impinges on the Al sheet, 
it becomes diffracted. (b) A comparison of an actual electron diffraction ring pattern from an Al sample (left) with the diffraction 
pattern that would be obtained from an X-ray beam of wavelength 0.0123 nm (right). The electron kinetic energy was 10 keV, 
which corresponds to the same wavelength. (c) A plot of sin θ1 along the y-axis against 1∕V 1∕2 along x-axis. The best straight 
line is y = 2.641x + 3 × 10−4 with an R2 fit of 0.9958. The experiments confirm the de Broglie relationship, λ = h∕p. 
  (b) Photo by S. Kasap. 

(a) (c)(b)
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3 . 5  confined eLectron in a finite PotentiaL energy WeLL 245

condition that dψ∕dx should be continuous (see Figure 3.15). However, the infinite 
PE well is an exceptional case because V = ∞ means that only ψ = 0 outside the 
well can satisfy the Schrödinger equation.
 We can divide the problem into three regions I, II, and III as shown in Figure 
3.17a. In region II, inside the well V = 0, and we define k as before

k2 =
2meE

ħ2 [3.33]

so that in II, the Schrödinger equation becomes

d2ψ

dx2 + k2ψ = 0 [3.34]

The general solutions to Equation 3.34 is

ψ II(x) = B1exp( jkx) + B2exp(−jkx) [3.35]

where B1 and B2 are the integration constants we need to find from boundary conditions.
In I and III, the PE is finite and V = Vo for x ≤ a and x ≥ a. We define

α2 =
2me(Vo − E)

ħ2 [3.36]

which depends on Vo; and hence α is a characteristic parameter for the finite well. 
With the above definition, the Schrödinger equation in I and III becomes11

d 
2ψ

dx2 − α2ψ = 0 [3.37]

Notice that the second term has the opposite sign to Equation 3.34. The general 
solutions in I and III are

ψI(x) = A1exp(αx) + A2exp(−αx) [3.38a]

ψIII(x) = C1exp(αx) + C2exp(−αx) [3.38b]

where As and Cs are integration constants.
 We are looking for electron energies inside the well, that is, E < Vo, which means 
α is positive. Each of Equations 3.35 and 3.38a, and 3.38b has two constants that we 
need to find through boundary conditions and requirements on the wavefunction. In 
the present case, ψ (x) cannot be zero at the boundaries, ψ (x) exists both inside and 
outside the well, and it must be continuous, single valued and have a continuous 
slope, that is dψ∕dx must be continuous. (See Figure 3.15.) Further, the normaliza-
tion requirement means that if we integrate ∣ψ (x)∣2 over all space, it should be 1, 
so that A2 and C1 must be zero; otherwise C1exp(αx) would increase to infinity as 
x → +∞ and similarly so would A2exp(−αx) as x → −∞.
 Figure 3.17b and c show the wavefunctions and the energies of the electron 
derived by continuing the mathematical steps above further. Within the well, we have 
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Electron 
wavefunction 
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11 It is easy to show that while we need an exp(± jkx) type of solution for Equation 3.34, for Equation 3.37, which 
has the opposite sign, the solution cannot have the j, and must be of the form exp(±αx).
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 6 . 3  depletion lAyer cApAcitAnce oF the pn Junction 555

that is

 Cdep =
εA

W
 [6.28]

 Equation 6.28 is generally valid even if we do not have a one-sided junction, 
and is basically Equation 6.27 for a uniformly doped abrupt junction. Since W 
depends on the voltage, so does the depletion capacitance.
 Suppose that we assume that the donor concentration in the p+n junction follows 
Nd(x) = Bxm as shown in Figure 6.13b; and d for three m values. Obviously, m = 0 
is the abrupt junction case. If we integrate ρnet = eBxm across the depletion region 
W, we would get the field and if we integrate it again, we would find the total volt-
age across the depletion region, Vo − V or Vo + Vr as a function of W, that is the 
dependence of W on (Vo − V ). We can then substitute for W in Equation 6.28 and 
find Cdep as

 Cdep = A[
eεm+1B

(m + 2)(Vo − V) ]
1∕(m+2)

 [6.29]

 
in which V = −Vr for reverse bias. Clearly under suitable reverse bias Vr > Vo, and 
Cdep ∝ Vr

−1∕(m+2) which implies that we should design a pn junction whose Cdep 
dependence on the external Vr can be controlled. Notice that m = 1 gives Cdep ∝ 
Vr

−1∕3 as expected from Equation 6.27. For many pn junctions, the dopant concentration 
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Figure 6.13 (a) A one-sided p+n junction under reverse bias Vr in which Wn ≫ Wp and W ≈ Wn. The n-side depletion  
region has exposed positive donors with total charge +Q. When Vr increased by dVr, +Q increases by +dQ. There is also 
an increase in the negative charge by the same amount in the p+-side depletion region but this is not shown since it is 
very narrow. (b) An arbitrary donor concentration Nd(x) on the n-side and the regions of +Q and +dQ corresponding to Vr 
and dVr. (c) The field is almost totally on the n-side, maximum at the metallurgical junction at x = 0, and falls rapidly into  
the p+-side. The area under the electric field ∣E(x)∣ is the voltage across the depletion region. (d) Shapes of the donor  
concentration Nd(x) = Bxm profiles for m = 0 (abrupt), 1 (linear), and −3∕2 (hyperabrupt).
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556 C H A P T E R  6  ∙ Semiconductor deviceS

DEPLETION REGION CAPACITANCE Table 6.2 provides data on the capacitance C between 
the terminals of a reverse-biased Si diode at various reverse voltages Vr. The diode is a 
single sided p+n junction (fabricated by ion implantation) with a circular electrode that is 
approximately 500 μm in diameter. The stray capacitance or the packaging capacitance 
between the terminals is estimated to be 0.5–0.7 pF. Find the built-in voltage Vo and the donor 
concentration Nd. What is your conclusion?

SOLUTION

Since this a single-sided p+n type Si diode, from Equation 6.27, with Na ≫ Nd, we have

[6.30]

and substituting V = −Vr and rearranging the equation,

A plot of 1∕C2
dep against Vr should be straight line and we can find Vo and Nd from the inter-

cept and the slope. However, the measured C is not exactly Cdep but Cdep + Cs, where Cs is 
the stray capacitance 0.6 ± 0.1 pF. Table 6.2 shows a third row in which 1∕C2

dep has been 
calculated from the second row (C) by subtracting Cs = 0.6 pF. Figure 6.14 shows the plot 
of 1∕C2

dep against Vr, which follows the expected behavior quite well with the best line being 

EXAMPLE 6.7

on both or on one side can be approximated as a linear variation (m = 1) so that 
Cdep ∝ Vr

−1∕3.
 The voltage dependence of the depletion capacitance is utilized in varactor 
diodes (varicaps), which are used as voltage-dependent capacitors in tuning circuits. 
A varactor diode is reverse biased to prevent conduction, and its depletion capaci-
tance is varied by the magnitude of the reverse bias. The resonant frequency of an 
LC circuit with a varactor will be

fo =
1

2π√LCdep
∝ (Vo − V)1∕2(m+2)

fo will be linear in Vr if 1∕(m + 2) = 1 or m = −3∕2, which is shown in Figure 
6.13d. pn junctions with such or similar sharp dopant profiles are called hyperabrupt 
junctions.9

9 See Question 6.10 on varactor diodes. The term hyperabrupt is commonly used for doping profiles in which m 
is negative, i.e., the donor concentration decreases with x in Figure 6.13d.

p+n junction 
depletion 
capacitance

Table 6.2 Capacitance of a reverse-biased Si pn junction diode at 23 °C

Vr (V) 0.5 1.0 2.0 4.0 8.0 10 15
C (pF) 42.6 36.4 29.2 22.4 16.6 15.3 12.6
1∕C2

dep × 10−4 (pF−2) 5.67 7.80 12.2 21.04 39.1 46.3 69.4
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6 . 3  depletion lAyer cApAcitAnce oF the pn Junction 557

y = 0.000438x + 0.000346 (easily obtained from a graphic software such as Excel). The 
intercept on the Vr axis gives −Vo so that

Vo = 0.000346∕0.000438 = 0.79 V.

The slope is

Slope = = 0.000438 V pF−2,

so that substituting A = π(250 × 10−6 m)2 = 1.97 × 10−7 m2, ε = εoεr, εr = 11.9, we find 
Nd = 7.0 × 1021 m−3 or Nd = 7.0 × 1015 cm−3.
 We can also extract Na by using Vo = (kT∕e)ln(NaNd∕ni

2), which gives Na = 4.0 × 1023 m−3 
or 4.0 × 1017 cm−3; a reasonable value. While these are reasonable values, they do depend 
on the stray capacitance, especially Na. If we repeat the above calculations for different Cs 
we would find the results in Table 6.3. Notice that while Nd values are comparable between 
different Cs values, Na is extremely sensitive to stray capacitance and varies by five orders 
of magnitude. Clearly, stray capacitance correction is very important, assuming everything 
else has been accounted (including the assumption of an abrupt junction).

Table 6.3 Extraction of pn junction characteristics from diode capacitance measurements

Cs (pF) 0 0.5 0.6 0.7 1
Vo (V) 0.96 0.82 0.79 0.75 0.67
Nd (cm−3) 7.8 × 1015 7.1 × 1015 7.0 × 1015 6.9 × 1015 6.5 × 1015

Na (cm−3) 3.1 × 1020 1.2 × 1018 4.0 × 1017 8.1 × 1016 4.7 × 1015

Vo = 0.79
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Figure 6.14 Plot of 1∕C2
dep against Vr for  

data in Table 6.2. The solid line is the best fit 
to the data.

LINEARLY GRADED pn JUNCTIONS The simplest way to fabricate a pn junction is to dif-
fuse dopants into a Si wafer at a high temperature in a diffusion chamber. Consider an n-type 
Si crystal and we expose one surface of the crystal to a boron gas at a high temperature in 
a diffusion chamber. B-atoms from the gas enter and diffuse into the Si-crystal as depicted 
in Figure 6.15. The boron (acceptor) concentration Na decays with x as shown in Figure 6.15 
at two times t1 and t2 where t2 > t1. The whole acceptor concentration profile Na(x) widens 

 EXAMPLE 6.8
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